Great triambic icosahedron | Medial triambic icosahedron | |
Types | Dual uniform polyhedra | |
Symmetry group | Ih | |
Name | Great triambic icosahedron | Medial triambic icosahedron |
Index references | DU47, W34, 30/59 | DU41, W34, 30/59 |
Elements | F = 20, E = 60 V = 32 (χ = -8) |
F = 20, E = 60 V = 24 (χ = -16) |
Isohedral faces | ||
Duals | Great ditrigonal icosidodecahedron |
Ditrigonal dodecadodecahedron |
Stellation | ||
Icosahedron: W34 | ||
Stellation diagram |
In geometry, the great triambic icosahedron and medial triambic icosahedron are visually identical dual uniform polyhedra. The exterior surface also represents the De1f1 stellation of the icosahedron. The only way to differentiate these two polyhedra is to mark which intersections between edges are true vertices and which are not. In the above images, true vertices are marked by gold spheres.
The 12 vertices of the convex hull matches the vertex arrangement of an icosahedron.
Contents |
The great triambic icosahedron is the dual of the great ditrigonal icosidodecahedron, U47. It has 20 inverted-hexagonal faces, shaped like a three-bladed propeller. It has 32 vertices: 12 exterior points, and 20 hidden inside. It has 60 edges.
The medial triambic icosahedron is the dual of the ditrigonal dodecadodecahedron, U41. It has 20 faces, each being simple concave isogonal hexagons. It has 24 vertices: 12 exterior points, and 12 hidden inside. It has 60 edges.
Unlike the great triambic icosahedron, the medial triambic icosahedron is topologically a regular polyhedron of index two.[1] By distorting the triambi into regular hexagons, one obtains the hyperbolic order-5 hexagonal tiling:
It is Wenninger's 34th model in his 9th stellation of the icosahedron
Notable stellations of the icosahedron | ||||||||
Regular | Uniform duals | Regular compounds | Regular star | Others | ||||
Icosahedron | Small triambic icosahedron | Great triambic icosahedron | Compound of five octahedra | Compound of five tetrahedra | Compound of ten tetrahedra | Great icosahedron | Excavated dodecahedron | Final stellation |
---|---|---|---|---|---|---|---|---|
The stellation process on the icosahedron creates a number of related polyhedra and compounds with icosahedral symmetry. |